Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis.

نویسندگان

  • T Jonassen
  • C F Clarke
چکیده

The COQ3 gene in Saccharomyces cerevisiae encodes an O-methyltransferase required for two steps in the biosynthetic pathway of ubiquinone (coenzyme Q, or Q). This enzyme methylates an early Q intermediate, 3,4-dihydroxy-5-polyprenylbenzoic acid, as well as the final intermediate in the pathway, converting demethyl-Q to Q. This enzyme is also capable of methylating the distinct prokaryotic early intermediate 2-hydroxy-6-polyprenyl phenol. A full-length cDNA encoding the human homologue of COQ3 was isolated from a human heart cDNA library by sequence homology to rat Coq3. The clone contained a 933-base pair open reading frame that encoded a polypeptide with a great deal of sequence identity to a variety of eukaryotic and prokaryotic Coq3 homologues. In the region between amino acids 89 and 255 in the human sequence, the rat and human homologues are 87% identical, whereas human and yeast are 35% identical. When expressed in multicopy, the human construct rescued the growth of a yeast coq3 null mutant on a nonfermentable carbon source and restored coenzyme Q biosynthesis, although at lower levels than that of wild type yeast. In vitro methyltransferase assays using farnesylated analogues of intermediates in the coenzyme Q biosynthetic pathway as substrates showed that the human enzyme is active with all three substrates tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic evidence for a multi-subunit complex in the O-methyltransferase steps of coenzyme Q biosynthesis.

Coq3 O-methyltransferase carries out both O-methylation steps in coenzyme Q (ubiquinone) biosynthesis. The degree to which Coq3 O-methyltransferase activity and expression are dependent on the other seven COQ gene products has been investigated. A panel of yeast mutant strains harboring null mutations in each of the genes required for coenzyme Q biosynthesis (COQ1-COQ8) have been prepared. Mito...

متن کامل

Complementation of coq3 mutant yeast by mitochondrial targeting of the Escherichia coli UbiG polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis.

Ubiquinone functions in the mitochondrial electron transport chain. Recent evidence suggests that the reduced form of ubiquinone (ubiquinol) may also function as a lipid soluble antioxidant. The biosynthesis of ubiquinone requires two O-methylation steps. In eukaryotes, the first O-methylation step is carried out by the Coq3 polypeptide, which catalyzes the transfer of a methyl group from S-ade...

متن کامل

Expression of 4 Genes in Ocimum basilicum and their Relationship with Phenylpropanoids Content

Recent data showed that phenylpropanoid compound, methylchavicol is essential component of Iranian cultivars of basil. Studying their occurrence during development of plant may help to elucidate the role of phenylpropanoids in plant cell physiology. We followed the phenylpropanoids concentration and the expression of genes related to their biosynthesis during growth and development of two culti...

متن کامل

Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis.

Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to grow on nonfermentable carbon sources. The biosynthesis of Q involves two separate O-methylation step...

متن کامل

Yeast Coq5 C-methyltransferase is required for stability of other polypeptides involved in coenzyme Q biosynthesis.

Coenzyme Q (Q) functions in the electron transport chain of both prokaryotes and eukaryotes. The biosynthesis of Q requires a number of steps involving at least eight Coq polypeptides. Coq5p is required for the C-methyltransferase step in Q biosynthesis. In this study we demonstrate that Coq5p is peripherally associated with the inner mitochondrial membrane on the matrix side. Phenotypic charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 17  شماره 

صفحات  -

تاریخ انتشار 2000